non-abelian, soluble, monomial
Aliases: C24⋊4D15, C22⋊(C5⋊S4), C5⋊(C22⋊S4), (C2×C10)⋊2S4, C22⋊A4⋊3D5, (C23×C10)⋊6S3, (C5×C22⋊A4)⋊2C2, SmallGroup(480,1201)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C24 — C5×C22⋊A4 — C24⋊4D15 |
C1 — C22 — C24 — C23×C10 — C5×C22⋊A4 — C24⋊4D15 |
C5×C22⋊A4 — C24⋊4D15 |
Generators and relations for C24⋊4D15
G = < a,b,c,d,e,f | a2=b2=c2=d2=e15=f2=1, eae-1=fbf=ab=ba, ac=ca, ad=da, af=fa, bc=cb, bd=db, ebe-1=a, fcf=ede-1=cd=dc, ece-1=d, df=fd, fef=e-1 >
Subgroups: 1084 in 112 conjugacy classes, 13 normal (7 characteristic)
C1, C2, C3, C4, C22, C22, C5, S3, C2×C4, D4, C23, D5, C10, A4, C15, C22⋊C4, C2×D4, C24, Dic5, D10, C2×C10, C2×C10, S4, D15, C22≀C2, C2×Dic5, C5⋊D4, C22×D5, C22×C10, C22⋊A4, C5×A4, C23.D5, C2×C5⋊D4, C23×C10, C22⋊S4, C5⋊S4, C24⋊2D5, C5×C22⋊A4, C24⋊4D15
Quotients: C1, C2, S3, D5, S4, D15, C22⋊S4, C5⋊S4, C24⋊4D15
Character table of C24⋊4D15
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 5A | 5B | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 15A | 15B | 15C | 15D | |
size | 1 | 3 | 3 | 3 | 6 | 60 | 32 | 60 | 60 | 60 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 32 | 32 | 32 | 32 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ5 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ6 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -ζ32ζ54+ζ32ζ5-ζ54 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ53+ζ3ζ52-ζ53 | -ζ3ζ54+ζ3ζ5-ζ54 | orthogonal lifted from D15 |
ρ7 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ54+ζ3ζ5-ζ54 | -ζ32ζ54+ζ32ζ5-ζ54 | -ζ3ζ53+ζ3ζ52-ζ53 | orthogonal lifted from D15 |
ρ8 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -ζ3ζ53+ζ3ζ52-ζ53 | -ζ32ζ54+ζ32ζ5-ζ54 | -ζ3ζ54+ζ3ζ5-ζ54 | ζ3ζ53-ζ3ζ52-ζ52 | orthogonal lifted from D15 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -ζ3ζ54+ζ3ζ5-ζ54 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ32ζ54+ζ32ζ5-ζ54 | orthogonal lifted from D15 |
ρ10 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 1 | 1 | -1 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | 3 | 3 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ11 | 3 | -1 | 3 | -1 | -1 | -1 | 0 | 1 | -1 | 1 | 3 | 3 | -1 | 3 | -1 | -1 | -1 | -1 | -1 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ12 | 3 | -1 | -1 | 3 | -1 | -1 | 0 | -1 | 1 | 1 | 3 | 3 | -1 | -1 | -1 | 3 | -1 | -1 | -1 | -1 | -1 | 3 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ13 | 3 | 3 | -1 | -1 | -1 | 1 | 0 | -1 | -1 | 1 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | 3 | 3 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ14 | 3 | -1 | 3 | -1 | -1 | 1 | 0 | -1 | 1 | -1 | 3 | 3 | -1 | 3 | -1 | -1 | -1 | -1 | -1 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ15 | 3 | -1 | -1 | 3 | -1 | 1 | 0 | 1 | -1 | -1 | 3 | 3 | -1 | -1 | -1 | 3 | -1 | -1 | -1 | -1 | -1 | 3 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ16 | 6 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 6 | 6 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from C22⋊S4 |
ρ17 | 6 | 6 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | -3+3√5/2 | -3-3√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from C5⋊S4 |
ρ18 | 6 | 6 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | -3-3√5/2 | -3+3√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from C5⋊S4 |
ρ19 | 6 | -2 | 6 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 1-√5/2 | -3-3√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -3+3√5/2 | 1-√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from C5⋊S4 |
ρ20 | 6 | -2 | -2 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -3+3√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | -3-3√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from C5⋊S4 |
ρ21 | 6 | -2 | 6 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 1+√5/2 | -3+3√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -3-3√5/2 | 1+√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from C5⋊S4 |
ρ22 | 6 | -2 | -2 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -3-3√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | -3+3√5/2 | 0 | 0 | 0 | 0 | orthogonal lifted from C5⋊S4 |
ρ23 | 6 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 3ζ53-ζ52 | 1-√5/2 | 3ζ54-ζ5 | 1-√5/2 | -ζ54+3ζ5 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -ζ53+3ζ52 | 1+√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 6 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 3ζ54-ζ5 | 1+√5/2 | -ζ53+3ζ52 | 1+√5/2 | 3ζ53-ζ52 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -ζ54+3ζ5 | 1-√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 6 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | -ζ54+3ζ5 | 1+√5/2 | 3ζ53-ζ52 | 1+√5/2 | -ζ53+3ζ52 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 3ζ54-ζ5 | 1-√5/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 6 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | -ζ53+3ζ52 | 1-√5/2 | -ζ54+3ζ5 | 1-√5/2 | 3ζ54-ζ5 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 3ζ53-ζ52 | 1+√5/2 | 0 | 0 | 0 | 0 | complex faithful |
(1 31)(2 37)(3 28)(4 34)(5 40)(6 15)(7 21)(8 12)(9 18)(10 24)(11 16)(13 23)(14 19)(17 22)(20 25)(26 36)(27 32)(29 39)(30 35)(33 38)
(1 26)(2 32)(3 38)(4 29)(5 35)(6 25)(7 16)(8 22)(9 13)(10 19)(11 21)(12 17)(14 24)(15 20)(18 23)(27 37)(28 33)(30 40)(31 36)(34 39)
(1 36)(2 27)(3 33)(4 39)(5 30)(6 15)(7 21)(8 12)(9 18)(10 24)(11 16)(13 23)(14 19)(17 22)(20 25)(26 31)(28 38)(29 34)(32 37)(35 40)
(1 26)(2 32)(3 38)(4 29)(5 35)(6 20)(7 11)(8 17)(9 23)(10 14)(12 22)(13 18)(15 25)(16 21)(19 24)(27 37)(28 33)(30 40)(31 36)(34 39)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 8)(2 7)(3 6)(4 10)(5 9)(11 32)(12 31)(13 30)(14 29)(15 28)(16 27)(17 26)(18 40)(19 39)(20 38)(21 37)(22 36)(23 35)(24 34)(25 33)
G:=sub<Sym(40)| (1,31)(2,37)(3,28)(4,34)(5,40)(6,15)(7,21)(8,12)(9,18)(10,24)(11,16)(13,23)(14,19)(17,22)(20,25)(26,36)(27,32)(29,39)(30,35)(33,38), (1,26)(2,32)(3,38)(4,29)(5,35)(6,25)(7,16)(8,22)(9,13)(10,19)(11,21)(12,17)(14,24)(15,20)(18,23)(27,37)(28,33)(30,40)(31,36)(34,39), (1,36)(2,27)(3,33)(4,39)(5,30)(6,15)(7,21)(8,12)(9,18)(10,24)(11,16)(13,23)(14,19)(17,22)(20,25)(26,31)(28,38)(29,34)(32,37)(35,40), (1,26)(2,32)(3,38)(4,29)(5,35)(6,20)(7,11)(8,17)(9,23)(10,14)(12,22)(13,18)(15,25)(16,21)(19,24)(27,37)(28,33)(30,40)(31,36)(34,39), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,8)(2,7)(3,6)(4,10)(5,9)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,26)(18,40)(19,39)(20,38)(21,37)(22,36)(23,35)(24,34)(25,33)>;
G:=Group( (1,31)(2,37)(3,28)(4,34)(5,40)(6,15)(7,21)(8,12)(9,18)(10,24)(11,16)(13,23)(14,19)(17,22)(20,25)(26,36)(27,32)(29,39)(30,35)(33,38), (1,26)(2,32)(3,38)(4,29)(5,35)(6,25)(7,16)(8,22)(9,13)(10,19)(11,21)(12,17)(14,24)(15,20)(18,23)(27,37)(28,33)(30,40)(31,36)(34,39), (1,36)(2,27)(3,33)(4,39)(5,30)(6,15)(7,21)(8,12)(9,18)(10,24)(11,16)(13,23)(14,19)(17,22)(20,25)(26,31)(28,38)(29,34)(32,37)(35,40), (1,26)(2,32)(3,38)(4,29)(5,35)(6,20)(7,11)(8,17)(9,23)(10,14)(12,22)(13,18)(15,25)(16,21)(19,24)(27,37)(28,33)(30,40)(31,36)(34,39), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,8)(2,7)(3,6)(4,10)(5,9)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,26)(18,40)(19,39)(20,38)(21,37)(22,36)(23,35)(24,34)(25,33) );
G=PermutationGroup([[(1,31),(2,37),(3,28),(4,34),(5,40),(6,15),(7,21),(8,12),(9,18),(10,24),(11,16),(13,23),(14,19),(17,22),(20,25),(26,36),(27,32),(29,39),(30,35),(33,38)], [(1,26),(2,32),(3,38),(4,29),(5,35),(6,25),(7,16),(8,22),(9,13),(10,19),(11,21),(12,17),(14,24),(15,20),(18,23),(27,37),(28,33),(30,40),(31,36),(34,39)], [(1,36),(2,27),(3,33),(4,39),(5,30),(6,15),(7,21),(8,12),(9,18),(10,24),(11,16),(13,23),(14,19),(17,22),(20,25),(26,31),(28,38),(29,34),(32,37),(35,40)], [(1,26),(2,32),(3,38),(4,29),(5,35),(6,20),(7,11),(8,17),(9,23),(10,14),(12,22),(13,18),(15,25),(16,21),(19,24),(27,37),(28,33),(30,40),(31,36),(34,39)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,8),(2,7),(3,6),(4,10),(5,9),(11,32),(12,31),(13,30),(14,29),(15,28),(16,27),(17,26),(18,40),(19,39),(20,38),(21,37),(22,36),(23,35),(24,34),(25,33)]])
Matrix representation of C24⋊4D15 ►in GL8(𝔽61)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 60 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 60 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 60 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 60 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 60 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 60 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 60 | 1 | 0 |
30 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
49 | 42 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
24 | 27 | 0 | 0 | 0 | 0 | 0 | 0 |
51 | 37 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(8,GF(61))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,60,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,60,60,60,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,60,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,60,60,60,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,60,60,60,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,60,60,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[30,49,0,0,0,0,0,0,12,42,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0],[24,51,0,0,0,0,0,0,27,37,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;
C24⋊4D15 in GAP, Magma, Sage, TeX
C_2^4\rtimes_4D_{15}
% in TeX
G:=Group("C2^4:4D15");
// GroupNames label
G:=SmallGroup(480,1201);
// by ID
G=gap.SmallGroup(480,1201);
# by ID
G:=PCGroup([7,-2,-3,-5,-2,2,-2,2,57,506,1683,850,1054,1586,10085,7572,5886,2953]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^15=f^2=1,e*a*e^-1=f*b*f=a*b=b*a,a*c=c*a,a*d=d*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=a,f*c*f=e*d*e^-1=c*d=d*c,e*c*e^-1=d,d*f=f*d,f*e*f=e^-1>;
// generators/relations
Export